Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in Staphylococcus aureus.

Identifieur interne : 000046 ( Main/Exploration ); précédent : 000045; suivant : 000047

Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in Staphylococcus aureus.

Auteurs : Vu Van Loi [Allemagne] ; Haike Antelmann [Allemagne]

Source :

RBID : pubmed:32420048

Abstract

Recent advances in the design of genetically encoded redox biosensors, such as redox-sensitive GFP (roGFP) have facilitated the real-time imaging of the intracellular redox potential in eukaryotic cells at high sensitivity and at spatiotemporal resolution. To increase the specificity of roGFP2 for the interaction with the glutathione (GSH)/ glutathione disulfide (GSSG) redox couple, roGFP2 has been fused to glutaredoxin (Grx) to construct the Grx-roGFP2 biosensor. We have previously designed the related Brx-roGFP2 redox biosensor for dynamic measurement of the bacillithiol redox potential (EBSH) in the human pathogen Staphylococcus aureus. Here, we describe the detailed method for measurements of the oxidation degree (OxD) of the Brx-roGFP2 biosensor in S. aureus using the microplate reader. In particularly, we provide details for determination of the EBSH changes during the growth and after oxidative stress. For future biosensor applications at the single cell level, we recommend the design of genome-encoded roGFP2 biosensors enabling stable expression and fluorescence in bacteria.•Brx-roGFP2 is specific for measurements of the bacillithiol redox potential in Staphylococcus aureus cells•Control samples for fully reduced and oxidized states of Brx-roGFP2 are required for calibration during OxD measurements•Easy to measure fluorescence excitation intensities at the 405 and 488 nm excitation maxima using microplate readers.

DOI: 10.1016/j.mex.2020.100900
PubMed: 32420048
PubMed Central: PMC7214941


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in
<i>Staphylococcus aureus</i>
.</title>
<author>
<name sortKey="Van Loi, Vu" sort="Van Loi, Vu" uniqKey="Van Loi V" first="Vu" last="Van Loi">Vu Van Loi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32420048</idno>
<idno type="pmid">32420048</idno>
<idno type="doi">10.1016/j.mex.2020.100900</idno>
<idno type="pmc">PMC7214941</idno>
<idno type="wicri:Area/Main/Corpus">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000058</idno>
<idno type="wicri:Area/Main/Curation">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000058</idno>
<idno type="wicri:Area/Main/Exploration">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in
<i>Staphylococcus aureus</i>
.</title>
<author>
<name sortKey="Van Loi, Vu" sort="Van Loi, Vu" uniqKey="Van Loi V" first="Vu" last="Van Loi">Vu Van Loi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">MethodsX</title>
<idno type="ISSN">2215-0161</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent advances in the design of genetically encoded redox biosensors, such as redox-sensitive GFP (roGFP) have facilitated the real-time imaging of the intracellular redox potential in eukaryotic cells at high sensitivity and at spatiotemporal resolution. To increase the specificity of roGFP2 for the interaction with the glutathione (GSH)/ glutathione disulfide (GSSG) redox couple, roGFP2 has been fused to glutaredoxin (Grx) to construct the Grx-roGFP2 biosensor. We have previously designed the related Brx-roGFP2 redox biosensor for dynamic measurement of the bacillithiol redox potential (
<i>E</i>
<sub>BSH</sub>
) in the human pathogen
<i>Staphylococcus aureus</i>
. Here, we describe the detailed method for measurements of the oxidation degree (OxD) of the Brx-roGFP2 biosensor in
<i>S. aureus</i>
using the microplate reader. In particularly, we provide details for determination of the
<i>E</i>
<sub>BSH</sub>
changes during the growth and after oxidative stress. For future biosensor applications at the single cell level, we recommend the design of genome-encoded roGFP2 biosensors enabling stable expression and fluorescence in bacteria.•Brx-roGFP2 is specific for measurements of the bacillithiol redox potential in
<i>Staphylococcus aureus</i>
cells•Control samples for fully reduced and oxidized states of Brx-roGFP2 are required for calibration during OxD measurements•Easy to measure fluorescence excitation intensities at the 405 and 488 nm excitation maxima using microplate readers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32420048</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2215-0161</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>MethodsX</Title>
<ISOAbbreviation>MethodsX</ISOAbbreviation>
</Journal>
<ArticleTitle>Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in
<i>Staphylococcus aureus</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>100900</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mex.2020.100900</ELocationID>
<Abstract>
<AbstractText>Recent advances in the design of genetically encoded redox biosensors, such as redox-sensitive GFP (roGFP) have facilitated the real-time imaging of the intracellular redox potential in eukaryotic cells at high sensitivity and at spatiotemporal resolution. To increase the specificity of roGFP2 for the interaction with the glutathione (GSH)/ glutathione disulfide (GSSG) redox couple, roGFP2 has been fused to glutaredoxin (Grx) to construct the Grx-roGFP2 biosensor. We have previously designed the related Brx-roGFP2 redox biosensor for dynamic measurement of the bacillithiol redox potential (
<i>E</i>
<sub>BSH</sub>
) in the human pathogen
<i>Staphylococcus aureus</i>
. Here, we describe the detailed method for measurements of the oxidation degree (OxD) of the Brx-roGFP2 biosensor in
<i>S. aureus</i>
using the microplate reader. In particularly, we provide details for determination of the
<i>E</i>
<sub>BSH</sub>
changes during the growth and after oxidative stress. For future biosensor applications at the single cell level, we recommend the design of genome-encoded roGFP2 biosensors enabling stable expression and fluorescence in bacteria.•Brx-roGFP2 is specific for measurements of the bacillithiol redox potential in
<i>Staphylococcus aureus</i>
cells•Control samples for fully reduced and oxidized states of Brx-roGFP2 are required for calibration during OxD measurements•Easy to measure fluorescence excitation intensities at the 405 and 488 nm excitation maxima using microplate readers.</AbstractText>
<CopyrightInformation>© 2020 The Author(s). Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Loi</LastName>
<ForeName>Vu</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Antelmann</LastName>
<ForeName>Haike</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Freie Universität Berlin, Institute of Biology-Microbiology, D-14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>MethodsX</MedlineTA>
<NlmUniqueID>101639829</NlmUniqueID>
<ISSNLinking>2215-0161</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bacillithiol</Keyword>
<Keyword MajorTopicYN="N">Genetically encoded roGFP2 biosensors</Keyword>
<Keyword MajorTopicYN="N">Microplate reader measurements</Keyword>
<Keyword MajorTopicYN="N">Staphylococcus aureus</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32420048</ArticleId>
<ArticleId IdType="doi">10.1016/j.mex.2020.100900</ArticleId>
<ArticleId IdType="pii">S2215-0161(20)30119-9</ArticleId>
<ArticleId IdType="pii">100900</ArticleId>
<ArticleId IdType="pmc">PMC7214941</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antioxid Redox Signal. 2016 May 1;24(13):680-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2017 Aug;109:167-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27939954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 May 20;26(15):835-848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Dec 11;9:3037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30619128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 21;279(21):22284-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):621-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jun 18;10:1355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31275277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Sep 4;40(35):10491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11523990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003782</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1998;290:59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Apr 10;18(11):1273-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22938038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1934062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):445-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1993 Sep;139(9):2041-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8245830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2019 Aug 1;139:55-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31121222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Van Loi, Vu" sort="Van Loi, Vu" uniqKey="Van Loi V" first="Vu" last="Van Loi">Vu Van Loi</name>
</region>
<name sortKey="Antelmann, Haike" sort="Antelmann, Haike" uniqKey="Antelmann H" first="Haike" last="Antelmann">Haike Antelmann</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000046 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000046 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32420048
   |texte=   Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in Staphylococcus aureus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32420048" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020